IA : TAMBA

Cellule : Mathématiques

Lycée : Koumpentoum

Classe : $2^{nde}S$

Année : 2024-2025 Chapitre : Repérage

SERIE D'EXERCICES

EXERCICE 1

Dans un repère $(0,\vec{i},\vec{j})$ on donne les points : A(3;-2), B(7;0), C(-4;3)

Trouvez une équation de la médiane issue de A et de la médiane issue de C dans le triangle ABC.

EXERCICE 2

Soit ABC un triangle quelconque et I le milieu de [BC]

- 1. Construire les points I et K tels que : $\overrightarrow{AJ} = \frac{1}{3}\overrightarrow{AC}$ et $\overrightarrow{AK} = \frac{1}{4}\overrightarrow{BC}$
- 2. On considère le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$. Calculez les coordonnées de I, J et K puis prouvez que I, J et K sont alignés.

EXERCICE 3

Soit $(0, \vec{l}, \vec{j})$ un repère du plan. On considère le point E(-1; 4) et $\vec{w}(3; -1)$

- 1. Déterminer une équation de la droite (\mathcal{D})pasant par E et dont un vecteur directeur est \vec{w}
- 2. Donner le coefficient directeur de (\mathcal{D}) ainsi que son ordonnée à l'origine.

EXERCICE 4

Dans un repère $(0, \vec{l}, \vec{j})$ du plan on considère la droite (\mathfrak{D}) d'équation y = 2x - 3 et A(3; -5).

Soit (Δ) la droite parallèle à (\mathfrak{D}) passant par A.

- 1. Déterminer une équation générale de (Δ)
- 2. Déterminer les coordonnées de \vec{u} vecteur directeur de (\mathfrak{D})
- 3. Soit (\mathfrak{D}') la droite passant par l'origine du repère et admettant $\vec{v}\left(-\frac{1}{2};1\right)$ comme vecteur directeur. Les droites (\mathfrak{D}) et (\mathfrak{D}') sont-elles parallèles ?

EXERCICE 5

Les points A, B, C et D sont situés sur un axe de telle sorte que : $\overline{AB} = -8$; $\overline{BC} = 12$ et $\overline{CD} = -6$. Calculer \overline{AC} , \overline{AD} , \overline{BA} , \overline{BD} et \overline{DA} .

EXERCICE 6

Dans chacun des cas suivants on demande :

- a) De donner une représentation paramétrique de la droite (D).
- b) De déterminer les points d'intersection de (D) avec les axes du repère.
- 1. (D) passe par $A\binom{1}{2}$ et a pour vecteur directeur $\vec{U}\binom{3}{1}$.
- 2. (D) passe par $A\binom{1}{2}$ et $B\binom{-2}{4}$.
- 3. (D) passe par $A\binom{1}{2}$ et a pour coefficient directeur -2.
- 4. (D) a pour équation : x + 2y 3 = 0.

EXERCICE 7

Le plan est rapporté à un repère orthonormé $(0, \vec{t}; \vec{j})$.

On considère l'ensemble (Dm) des points M du plan dont les coordonnées (x; y) vérifient l'équation :

$$(2m-1)x + (3-m)y - 7m + 6 = 0.$$

- 1. Montrer que, quel soit m un réel, (Dm) est une droite.
- 2. Dans chacun des cas suivant trouver m pour que :
 - a. (Dm) passe par $A\binom{1}{1}$
 - b. (Dm) passe par l'origine du repère.
 - c. (Dm) soit parallèle à l'axe des abscisses.
 - d. (Dm) soit parallèle à l'axe des ordonnées.
 - e. (Dm) ait pour coefficient directeur -1.
 - f. (Dm) soit parallèle à la droite d'équation x 3y 5 = 0.
 - g. Existe-t-il un point commun à toutes les droites (Dm)?

EXERCICE 8

Soit ABCD un parallélogramme non aplati. On pose $\vec{U} = \overrightarrow{AB}$ et $\vec{V} = \overrightarrow{AC}$.

- 1. Les vecteurs $\vec{U} + \vec{V}$ et $\vec{U} \vec{V}$ sont-ils colinéaires ?
- 2. On pose $\vec{i} = \vec{U} + \vec{V}$ et $\vec{j} = \vec{U} \vec{V}$.

Donner les coordonnées de \vec{U} et \vec{V} dans la base $(\vec{i}; \vec{j})$.

- 3. Donner les coordonnées de A, B, C et D dans le repère $(B, \vec{i}; \vec{j})$.
- 4. Existe-t-il des points qui ont les mêmes coordonnées relativement aux repères $(A, \vec{U}; \vec{V})$ et $(B, \vec{i}; \vec{j})$?

EXERCICE 9

Soient \vec{U} et \vec{V} deux vecteurs dont les coordonnées relativement à la base $(\vec{i}; \vec{j})$ sont respectivement (1; 2) et (-1; -3).

- 1. Montrer que $(\vec{U}; \vec{V})$ est une base de l'ensemble des vecteurs du plan.
- 2. Exprimer \vec{i} et \vec{j} à l'aide de \vec{U} et \vec{V} .
- 3. Soient \vec{M} , \vec{N} et \vec{P} , trois vecteurs dont les coordonnées dans $(\vec{i}; \vec{j})$ sont respectivement (1; 2), (6; -4) et (-3; 2).

Quelles sont les coordonnées de \vec{M} , \vec{N} et \vec{P} dans la base $(\vec{U}; \vec{V})$?

4. Calculer les déterminants des couples de vecteurs suivants dans la base $(\vec{i}; \vec{j})$ puis dans la base $(\vec{U}; \vec{V})$: $(\vec{M}; \vec{N})$ et $(\vec{N}; \vec{P})$.

EXERCICE 10

Soit ABC un triangle et α un réel. On définit les trois points P, Q et R par :

$$\overrightarrow{CR} = \overrightarrow{-\alpha CB}$$
, $\overrightarrow{CQ} = \alpha \overrightarrow{CA}$ et $\overrightarrow{AP} = \alpha \overrightarrow{AB}$.

- 1. Déterminer dans le repère $(A, \overrightarrow{AB}; \overrightarrow{AC})$ les coordonnées des points P, Q et R en fonction de α .
- 2. Exprimer dans la base $(\overrightarrow{AB}; \overrightarrow{AC})$ les coordonnées des vecteurs \overrightarrow{PQ} et \overrightarrow{PR} à l'aide de α .
- 3. Déterminer α pour que P, Q et R soient alignés et distincts.
- 4. Dans ce cas montrer que Q est alors le milieu de [PR].

AU TRAVAIL

- L'énergie est contagieuse. Si tu veux voler avec les aigles, tu devras arrêter de nager avec les canards. T. HARVEKER
- Ce n'est pas parce que les choses sont difficiles que nous n'osons pas, c'est parce que nous n'osons pas qu'elles sont difficiles. SENEQUE